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Abstract

For MRI with non-Cartesian sampling, the conventional approach to reconstructing images is to use the gridding method with a Kai-
ser–Bessel (KB) interpolation kernel. Recently, Sha et al. [L. Sha, H. Guo, A.W. Song, An improved gridding method for spiral MRI using
nonuniform fast Fourier transform, J. Magn. Reson. 162(2) (2003) 250–258] proposed an alternative method based on a nonuniform FFT
(NUFFT) with least-squares (LS) design of the interpolation coefficients. They described this LS_NUFFT method as shift variant and
reported that it yielded smaller reconstruction approximation errors than the conventional shift-invariant KB approach. This paper ana-
lyzes the LS_NUFFT approach in detail. We show that when one accounts for a certain linear phase factor, the core of the LS_NUFFT
interpolator is in fact real and shift invariant. Furthermore, we find that the KB approach yields smaller errors than the original
LS_NUFFT approach. We show that optimizing certain scaling factors can lead to a somewhat improved LS_NUFFT approach, but
the high computation cost seems to outweigh the modest reduction in reconstruction error. We conclude that the standard KB approach,
with appropriate parameters as described in the literature, remains the practical method of choice for gridding reconstruction in MRI.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

For notational simplicity, we describe a 1D version of
MR reconstruction by gridding. The generalization to 2D
and 3D is straightforward using separable interpolators
as described previously, e.g. [2–4]. Given samples {F(mm)},
m = 1, . . . ,M of the Fourier transform of an object f(x),
one can estimate f by an approximate inverse Fourier
transform as follows:

f̂ ðxÞ ¼
XM

m¼1

dmF ðmmÞeı2pmmx;
where {dm} are sample density compensation factors that
one can determine with a variety of methods, e.g. [5]. For
practical purposes, it suffices to evaluate f̂ ðxÞ at a finite
set of N samples:
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fn , f̂ ððn� sÞDxÞ; n ¼ 0; . . . ;N� 1; ð1Þ

¼
XM

m¼1

ðdmF ðmmÞe�ı2pmmDxsÞeı2pmmDxn: ð2Þ

The parameter s indicates the center of the field of view rel-
ative to the image sampling, where typically s = N/2 or
(N � 1)/2. Defining xm , 2pmmDx and the phase modulated
spectrum

F m , dmF ðmmÞe�ıxms ð3Þ
the essence of the gridding reconstruction method is to
evaluate summations of the following form:

fn ¼
XM

m¼1

F meıxmn; n ¼ 0; . . . ;N� 1: ð4Þ

This is a ‘‘type 1’’ NUFFT as defined for example in [6].
The central approximation underlying gridding methods is:

eıxn � enðxÞ , sn

XK�1

k¼0

wkðx=cÞeıckn; ð5Þ
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for some K P N, where c , 2p/K and fwkðx=cÞg
K�1
k¼0 de-

notes interpolation coefficients associated with frequency
x. The (positive) sn values are called scaling factors [7].
The design problem is to choose the scaling factors
s = (s0, . . . , sN�1) and the interpolator wk(Æ) to minimize
the approximation error in (5).

If one imposed no constraints on wk, then (5) could be
made to be exact by choosing uniform scaling factors
sn = 1, and by using the following ideal interpolator:

wkðjÞ ¼
1

K

XN�1

n¼0

eıcjn e�ıckn;

¼ N
K

1

N

XN�1

n¼0

eıcðj�kÞn ¼ w0ðj� kÞ; ð6Þ

for k = 0, . . . ,K � 1, where

w0ðjÞ ,
N
K

e�ıcjg0dN ðjÞ; ð7Þ

where g0 , (N � 1)/2 and dN denotes the following K-peri-
odic Dirichlet kernel:

dN ðjÞ ,
1

N

XN�1

n¼0

eıcjðn�g0Þ ¼ sinðpjN=KÞ
N sinðpj=KÞ : ð8Þ

Note that dN(j), the ‘‘core’’ of the ideal interpolator, is real;
the only complex aspect of (7) is the linear phase term. Fur-
thermore, the j � k argument in (6) indicates an (integer)
shift invariance. It is logical therefore to expect that other
useful interpolators will have such integer shift invariance
and will have the same form as (7), namely, the product
of a linear phase term with a real interpolation kernel.

Substituting (7) into (5) and (4) and simplifying yields
the following expression for the ideal interpolation process:

fn ¼
N
K

XK�1

k¼0

XM

m¼1

ðF meıxmg0ÞdN
xm

c
� k

� �" #
eıckðn�g0Þ: ð9Þ

In this form, if s = g0, then we use the real, symmetric inter-
polator dN(Æ), followed by an inverse FFT centered at g0.

The ideal interpolator (7) would be computationally
impractical, so in practice one allows wk(j) to have at most
J� K nonzero values for each x. In particular, for simplic-
ity one uses the J neighbors that are nearest to x (in a mod-
ulo-2p sense). Define the integer offset as follows:

k0ðxÞ ,
½ðx=cÞmodK� � Jþ1

2
; J odd;

bðx=cÞmodKc � J
2
; J even;

(
ð10Þ

where ºÆß denotes the integer floor function, and [Æ] denotes
rounding to the nearest integer. This offset satisfies the fol-
lowing (integer) shift-invariance property:

k0ðxþ lcÞ ¼ lþ k0ðxÞ; 8 l 2 Z: ð11Þ

Then we replace (5) by the equivalent expression

eıxn � ênðx; uÞ ¼ sn

XJ

j¼1

ujðxÞeıcðk0ðxÞþjÞn; ð12Þ
where u(x) = (u1(x), . . . ,uJ(x)) denotes the vector of length
J of interpolation coefficients associated with frequency x.

In principle the interpolation coefficients u(x) could be
shift variant, but we will show shortly that good choices
for u(x) satisfy a shift-invariance property equivalent to
that of (6), contrary to the implication of [1, Fig. 1]. Having
made the approximation (12) we can evaluate the NUFFT
(approximately) as follows:

fn � f̂ n ,

XM

m¼1

F m sn

XJ

j¼1

ujðxmÞeıcðk0ðxmÞþjÞn

" #
;

¼ sn

XJ

j¼1

XM

m¼1

F mujðxmÞeıcðk0ðxmÞþjÞn: ð13Þ

This double summation can be implemented using an
O(MJ) interpolation (gridding) from the nonuniform fre-
quency space sample locations {xm} onto the nearby
Cartesian samples {ck}, followed by an O(K log2 K) inverse
FFT.

The approximation (5) leads to the following bounds on
the average weighted squared error:

1

N

XN�1

n¼0

wnjfn � f̂ nj2 6
1

N

XN�1

n¼0

wn

XM

m¼1

jF mj2jeıxmn � ênðxm; uÞj2

6

XM

m¼1

jF mj2
 !

max
x

E2ðx; s; uÞ; ð14Þ

where

E2ðx; s; uÞ , 1

N

XN�1

n¼0

wnjeıxn � ênðx; uÞj2: ð15Þ

This upper bound is tight because it would be achieved for
a spectrum Fm that is concentrated entirely on the worst-
case frequency. In light of this tight bound, it is desirable
to design the scaling factors s and the interpolation coeffi-
cients u(x) to minimize the worst-case error by the follow-
ing min–max criterion (cf. [4, Eq. (10)]):

min
s2CN

max
x

min
u2CJ

Eðx; s; uÞ: ð16Þ

In particular, for a given choice of s, we design u(x) for
each x as follows:

uðxÞ , arg minu2CJ Eðx; s; uÞ:

Having optimized u(x), the worst-case error is the follow-
ing function of the scaling factors:

EmaxðsÞ , max
x

Eðx; s; uðxÞÞ: ð17Þ

Finding u(x) by minimizing (15) is simply a weighted
least-squares problem that is linear in u. Solving that min-
imization directly leads to complex expressions, e.g. [1, Eq.
(7)] that perhaps shroud the nature of the interpolator. For
more insight, we rewrite the error as follows (cf. [4, Eq.
(14)]):



Fig. 1. Interpolator cores for the LS_NUFFT interpolator with cosine
scaling factors, and for the conventional Kaiser–Bessel interpolator,
normalized to unity maximum.
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E2ðx; s; uÞ ¼
XN�1

n¼0

wn eıxn � sn

XJ

j¼1

ujðxÞeıcðk0ðxÞþjÞn

�����
�����
2

;

¼ kb� SCKðxÞuðxÞk2
W1=2 ; ð18Þ

where kbk2
W1=2 ¼ b0Wb and

W ,
1

N
diagfwng;

bnðxÞ , eıðx�ck0ðxÞÞðn�g0Þ;

S , diagfsng; ð19Þ
Cnj , eıcjðn�g0Þ;

KjjðxÞ , e�ıðx�cðk0ðxÞþjÞÞg0 : ð20Þ

Clearly the (weighted) LS minimizer is

uðxÞ ¼ K�ðxÞT�1rðxÞ; ð21Þ

because K�1 = K*, where

T , C 0S0WSC ;

rðxÞ , C 0S 0WbðxÞ:

The elements of the J · J Toeplitz matrix T and the N-vec-
tor r(x) are given by

T lj ¼
1

N

XN�1

n¼0

wns2
neıcðl�jÞðn�g0Þ;

rjðxÞ ¼
1

N

XN�1

n¼0

wnsneıðx�cðk0ðxÞþjÞÞðn�g0Þ:

The key to this representation is the following fact: in the
usual case where wn and sn are chosen to be symmetric
about g0 (see (22) below), then T is a real matrix, and
r(x) is a real vector. In particular, the elements simplify to

T lj ¼
1

N

XN�1

n¼0

wns2
n cosðcðl� jÞðn� g0ÞÞ;

rjðxÞ ¼
1

N

XN�1

n¼0

wnsn cosððx� cðk0ðxÞ þ jÞÞðn� g0ÞÞ:

Thus the term T�1r(x) in (21), which is the core of this LS
optimal interpolator, is real; the only complex aspect of the
LS_NUFFT interpolator (21) is the linear phase term in
(20). This linear phase term corresponds directly to the
phase of the ideal interpolator in (7). Furthermore, the fre-
quency x enters the expressions above only in the form
x � ck0(x). So due to (11), the LS_NUFFT optimal inter-
polator satisfies exactly the same type of shift invariance

seen in the ideal interpolator (7).
Note that the LS optimal interpolator in (21) depends

only on each frequency location x individually, rather than
depending on the entire collection of samples {xm}.

1.1. Choosing the scaling factors sn

Having optimized the interpolator coefficients u(x), the
next step is to design the scaling factors s to minimize the
worst-case error in (17). Unfortunately there is no apparent
analytical optimizer for s. Therefore, one must use numer-
ical methods to optimize s. In the literature, several choices
for s have been proposed, all of which have the form

sn ¼ 1=Wððn� g0Þ=KÞ; ð22Þ

for various choices for the function W(t), such as uniform
factors, i.e., W(t) = 1, cosine factors [7]: W(t) = cos(pt),

and Gaussian factors [7,8]: WðtÞ ¼ r
ffiffiffiffiffiffi
2p
p

e�pðtr
ffiffiffiffi
2p
p
Þ2 , with r

chosen to minimize Emax. For the ‘‘type 2’’ NUFFT we have
recommended Kaiser–Bessel factors previously [4].

1.2. Choosing the weights wn

The results shown in Section 2 below are all for the
unweighted error criterion where wn = 1. This weighting
seems the most natural from a practical MR perspective
because usually we lack prior information that would favor
weighting the error in some parts of the field of view more
or less than other parts. However, from a computational
perspective, note that by choosing wn ¼ 1=s2

n, the matrix
T becomes independent of s [9], and has a simple closed-
form solution [4, Eq. (29)]:

T lj ¼ dN ðj� lÞ;

where dN was defined in (8). Furthermore, if we expand 1/sn

using a suitable truncated Fourier series, then a closed-form
solution for r(x) is also available [4, Eq. (30)]. However, be-
cause u(x) can be tabulated easily for a finely sampled grid
of x values, closed-form expressions for T and r(x) seem
unessential. The convenience of such expressions may be
offset by the subjectivity in choosing s-dependent wn values.

2. Results

Following [1], we considered the case J = 5, N = 28, and
K/N = 2. Fig. 1 shows the ‘‘core’’ of the LS_NUFFT inter-
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polator, i.e., T�1r(x), for the case of cosine scaling factors
recommended in [1]. The actual LS_NUFFT interpolator
consists of this core multiplied by the linear phase factor
(20). The nature of this interpolator is more clearly under-
stood by isolating its real core, compared to the results
described in [1, Fig. 1c]. Fig. 1 also shows the core of the
conventional KB interpolator. We chose the shape param-
eter a for the KB kernel using the empirical formula pro-
posed by Beatty et al. [10]:
a ¼ p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J 2

ðK=NÞ2
K
N
� 1

2

� �2

� 0:8

s
: ð23Þ
Fig. 2 shows the error E(x, s,u(x)) for three versions of
the LS_NUFFT interpolator (with uniform, cosine, and
Gaussian scaling factors) as well as for the standard KB
interpolator. Our implementation of the ‘‘standard’’ KB
interpolator includes the linear phase factors that appear
in both the ideal interpolator (6) and in the LS_NUFFT
interpolator (21). The implementation is analogous to (9).
For most frequencies, the LS_NUFFT interpolator with
any of the above scaling factors yields about an order-of-
magnitude higher errors than the standard KB interpola-
tor. The LS_NUFFT with cosine scaling factors is more
accurate only for frequencies x that are very close to c/2.
This is a narrow portion of the spectrum, so for most prac-
tical signals the standard KB interpolator will yield lower
overall error than the LS_NUFFT approach with uniform,
cosine, or Gaussian scaling factors.

To illustrate, we generated M = 200 random xm values
uniformly distributed over [�p,p], and complex Fm values
where the real and imaginary parts were each uniformly
distributed over [0,1]. We computed the exact direct sum-
mation (4) and then the NUFFT approximations (13) for
Fig. 2. Plots of the error E(x,s,u(x)) of the LS_NUFFT approach vs x/c
for three conventional choices of the scaling factors s, for the conventional
Kaiser–Bessel interpolator, and for the LS_NUFFT approach with
numerically optimized scaling factors.
various interpolators. We evaluated the normalized RMS
error kf̂ � f k=kf k, yielding the following results.
Method
 NRMSE (%)
LS_NUFFT uniform
 0.36117

LS_NUFFT cosine
 0.04853

LS_NUFFT Gaussian
 0.02574

Conventional KB
 0.00361
Again, the conventional KB interpolator yields about
an order-of-magnitude lower error than the LS_NUFFT
method with cosine scaling factors. These empirical
results corroborate the worst-case predictions shown in
Fig. 2.

To try to further optimize the LS_NUFFT method, we
used the Nelder–Mead simplex method [11] to minimize
Emax(s) in (17) over s numerically. We then recomputed
the LS_NUFFT interpolator using the resulting ‘‘opti-
mal’’ scaling factors s. Fig. 2 shows that the resulting
approximations errors are slightly lower than those of
the conventional KB approach. This small improvement
would seem to be outweighed by the long computation
required for optimizing s. Such optimization would need
to be repeated for new values of J, N, and K/N. In con-
trast, the scalar formula for a given in (23) works well
for all practical cases of interest, so no further optimiza-
tion is needed.
3. Discussion

By rearranging the factors in the derivation of the
LS_NUFFT method, we have shown that the LS_NUFFT
interpolator has a real-valued core with a linear phase term
that matches that of the ideal interpolator. We have also
shown that the LS_NUFFT interpolator is shift invariant,
contrary to [1]. Our results show that the standard KB
interpolator, when implemented with the shape parameter
a optimized as described in (23), yields lower overall errors
than the LS_NUFFT method with uniform, cosine, or
Gaussian scaling factors.

Although [1] states that the LS_NUFFT method is
‘‘free from the procedure of parameter optimization,’’
the LS_NUFFT method does require choices for both
the scaling factors s and the weighting values wn.
These choices strongly affect the resulting accuracy as
seen in Fig. 2, and finding the globally optimal s
remains a vexing open problem. The shape parameter
a described in (23) for the conventional KB approach
works very well.

If one must perform gridding repeatedly for the same
values of J, N and K/N, then optimizing the scaling factors
s of the LS_NUFFT method numerically may be benefi-
cial. But in the absence of such optimization, the conven-
tional KB approach for gridding is preferable to the
LS_NUFFT approach with conventional scaling factors
including cosine scaling factors [1,7].
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